Prove that the improper integral $$ \int^{\infty}_{a} \frac{sin(x)}{x^\gamma}\,dx $$ is convergent for $$a > 0 \,\, and\,\, \gamma > 0$$
Maple:
int(sin(x)/x^2,x=1..infinity);
abs(sin(x)/x^2)<=1/x^2; int(1/x^2,x=1...infinity);
Mathematica:
{Intergrate[Sin[x]/x^2,{x,1,Infinity}],
Abs[Sin[x]/x^2]<=1/x^2, Integrate[1/x^2,{x,1,Infinity}]}
From above you can see the syntax differences. Whether it's going to be maple or mathematica or maxima or sage ... the most important --- learn computer algebra system!
No comments:
Post a Comment